Lecture 4
2022/2023
Microwave Devices and Circuits
for Radiocommunications

2022/2023

2C/1L, MDCR

- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
- Tuesday 12-14, Online, P8
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- first test L1: 21-28.02.2023 (t2 and t3 not announced, lecture)
" 3att.=+0.5p
- all materials/equipments authorized

2022/2023

- Laboratory - associate professor Radu Damian
- Tuesday 08-12, II. 13 / (08:10)
- L-25\% final grade
- ADS, 4 sessions
- Attendance + personal results
- P - 25\% final grade
- ADS, 3 sessions (-1? 21.02.2022)
" personal homework

Materials

- http://rf-opto.etti.tuiasi.ro

© Laboratorul de Microunde si Op: $\times+$
 $\leftarrow \rightarrow$ C (i) Not secure | rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0
 Main Courses Master Staff Research Students Admin
 Microwave CD Optical Communications Optoelectronics Internet Antennas Practica Networks Educational soffware

Microwave Devices and Circuits for Radiocommunications (English)
Course: MDCR (2017-2018)
Course Coordinator: Assoc.P. Dr. Radu-Florin Damian
Code: EDOS412T
Discipline Type: DOS; Alternative, Specialty
Enrollment Year: 4, Sem. 7
Activities
Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:
Evaluation
Type: Examen
A: 50%, (Test/Colloquium)
B: 25\%, (Seminary/Laboratory/Project Activity)
D: 25%, (Homework/Specialty papers)
*林English I D Romana I

Grades

Aggregate Results
Attendance
Course
Laboratory.
Lists
Bonus-uri acumulate (final). Studenti care nu pot intra in examen
Materials
Course Slides
MDCR Lecture 1 (pdf, 5.43 MB , en, ma
MDCR Lecture 2 (pdf, 3.67 MB , en,
MDCR Lecture 3 (pdf, 4.76 MB , en
MDCR Lecture 4 (pdf, 5.58 MB, en, 2)

Online Exams

In order to participate at online exams you must get ready following

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam
- used at lectures/laboratory

Photos

Date:

Grupa	$5304(2015 / 2016)$
Specializarea	Tehnologii si sisteme de telecomunicatii

Marca 5184

Date:
Grupa $\quad 5304$ (2015/2016)

Specializarea Tehnologii si sisteme de telecomunicatii Marca 5184

Date:
Grupa $\quad 5304$ (2015/2016)
Specializarea Tehnologii si sisteme de telecomunicatii
Marca 5244

Trimite email acestui student | Adauga acest student la lista (0)

Acceseaza ca acest student
Note obtinute
Finantare Buget
Bursa Bursa de Studii

Profile photo

- Profile photo - online "exam"

Examene online: 2020/2021
Disciplina: MDC (Microwave Devices and Circuits (Engleza))
Pas 3

Nr.	Titlu	Start	Stop	Text
1	Profile photos	$03 / 03 / 2021 ; 10: 00$	$08 / 04 / 2021 ; 08: 00$	Online "exam" created f.

2 Mini Test 1 (lecture 2) 03/03/2021; 15:35 03/03/2021; 15:50 The current test consis ..
Grupa $\quad 5304$ (2015/2016)

Specializarea Tehnologii si sisteme de telecomunicatii
Marca
5184

Access

Not customized

Acceseaza ca acest student

Nume

Note obtimate

Disciplina	Tip	Data	Descriere	Nota	Puncte	Obs.
TW	Tehnologii Web					
	N	$17 / 01 / 2014$	Nota finala	10	-	
	A	$17 / 01 / 2014$	Colocviu Tehnologii Web 2013/2014	10	7.55	
	B	$17 / 01 / 2014$	Laborator Tehnologii Web 2013/2014	9	-	
	D	$17 / 01 / 2014$	Tema Tehnologii Web 2013/2014	9	-	

Online

- access to online exams requires the password received by email

Online

- access email/password

Main	Courses	Master	Staff	Resear
Grades	Student List	Exams	Photos	
POPESCU GOPO ION				
Fotografia nu exista		Date:		
		Grupa	5700 (2019/2020)	
		Specializarea	Inginerie electronica sitelec	
		Marca	7000000	

Password

received by email

Important message from RF-OPTO

Inbox x

Radu-Florin Damian
to me, POPESCU -
$\overline{\text { }}_{\text {A }}$ Romanian * $>$ English * Translate message

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" las

In atentia: POPESCU GOPO ION
Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare
Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation
Save this message in a safe place for later use

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.
Save this message in a safe place for later use

Online exam manual

- The online exam app used for:
=-lectures (attendance)
- laboratory
- project
-examinations

Materials

Other data

Manual examen on-line ($p d f, 2.65$ yB, ro, II) Simulare Examen (video) (mp4, 65) 12 MB, ro, II)

Microwave Devices and Circuits (Enqlis

Examen online

- always against a timetable
- long period (lecture attendance/laboratory results)
"-short period (tests: 15min, exam: 2h)
-

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for cc

Server Time

All exame aro hased on the server's time zone (it may be different from local time). For reference time on the server is now:

Online results submission

many numerical values／files

Sixam	net		Reminem																		
					${ }^{\frac{85}{585} 5}$	14833	15588	20212	18935	1809	3029	1 15．19	79.9	${ }^{37}$	689						
溉		$\frac{5}{50}$		$\frac{85}{\frac{85}{522} .}$		2587	1355	${ }^{3,464}$	3579	5558	22212	10.6	。	。		。					
		$\underbrace{\substack{\text { cise }}}_{\text {cose }}$					－	\bigcirc	。	－	\bigcirc	\bigcirc		－							
既						50	so	50	50	50	50	50									
						${ }_{18602}$	150.5	${ }_{1828} 18$	1335	92.12	121.6	14.48		35.19							
	$\frac{85}{\substack{\text { sicis．} \\ 2020}}$	$\xrightarrow{\frac{8}{\text { che }} \text { S．}}$			${ }_{\text {cosem }}^{\text {che }}$	1122	80． 8	202	1008	135.	1837	157.6									
										${ }^{7271}$				36.1							
							1225		${ }^{323}$	5436											
													2.05	33.6							

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submissionIntroduction

~ Microwaves

- Electrical Length (Phase Length)
- I-physical length
- $\mathrm{E}=\beta \cdot \mathrm{I}$ - electrical Length

$$
\begin{array}{ll}
E=\beta \cdot l=\frac{2 \pi}{\lambda} \cdot l=2 \pi \cdot\left(\frac{l}{\lambda}\right) & \text { V, I vary } \\
E=\beta \cdot l=\frac{2 \pi}{c_{0}} \cdot\left(l \cdot f \cdot \sqrt{\varepsilon_{r}}\right) & \sim \text { useless }
\end{array}
$$

- Dependency
- antenna gain
- radar cross-section

Electrical Length

- Behavior (and description) of any circuit depends on his electrical length at the particular frequency of interest
- E $\approx 0 \rightarrow$ Kirchhoff
- E>0 \rightarrow wave propagation

$$
E=\beta \cdot l=\frac{2 \pi}{\lambda} \cdot l=2 \pi \cdot\left(\frac{l}{\lambda}\right)
$$

TEM transmission lines

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

The lossless line

$$
V(z)=V_{0}^{+} \cdot\left(e^{-j \cdot \beta \cdot z}+\Gamma \cdot e^{j \cdot \beta \cdot z}\right) \quad I(z)=\frac{V_{0}^{+}}{Z_{0}} \cdot\left(e^{-j \cdot \beta \cdot z}-\Gamma \cdot e^{j \cdot \beta \cdot z}\right)
$$

- time-average Power flow along the line
$P_{\text {avg }}=\frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \operatorname{Re}\{1-\Gamma^{*} \cdot \underbrace{e^{-2 j \cdot \beta \cdot z}+\Gamma \cdot e^{2 j \cdot \beta \cdot z}}_{\left(z-z^{*}\right)=\operatorname{Im}}-|\Gamma|^{2}\}$
- Total power delivered to the load = Incident power - "Reflected" power
- Return "Loss" [dB] \quad RL $=-20 \cdot \log |\Gamma| \quad[\mathrm{dB}]$

The lossless line

- input impedance of a length \boldsymbol{l} of transmission line with characteristic impedance \boldsymbol{Z}_{0}, loaded with an arbitrary impedance \boldsymbol{Z}_{L}

Power transfer
Impedance Matching

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

Matching, from the point of view of

 power transmissionIf we choose a (any) real Zo
$Z_{L}=Z_{i}^{*}$

$$
\Gamma=\frac{Z-Z_{0}}{Z+Z_{0}}
$$

$$
\Gamma_{L}=\Gamma_{i}^{*}
$$

- complex numbers
- in the complex plane

Reflection and power / Model

- The source has the ability to sent to the load a certain maximum power (available power) P_{a}
- For a particular load the power sent to the load is less than the maximum (mismatch) $P_{L}<P_{a}$
- The phenomenon is "as if" (model) some of the power is reflected $P_{r}=P_{a}-P_{L}$
- The power is a scalar!

Laboratory 1
Impedance Matching

The quarter-wave transformer

Binomial multisection transformer

Sin	S-PARAMETERS
S_Param	
SP1	
Start $=0.5 \mathrm{GHz}$	
Stop $=5.5 \mathrm{GHz}$	
Step $=0.001 \mathrm{GHz}$	

Chebyshev multisection transformer

		-				
ζ	Term1	TLIN	TLIN	TLIN		
ξ	Num=1	TL1	TL2	TL3	<	Term2
	$\mathrm{Z}=100 \mathrm{Ohm}$	$\mathrm{Z}=77.68 \mathrm{Ohm}$	$\mathrm{Z}=54.77 \mathrm{Ohm}$	$\mathrm{Z}=38.62 \mathrm{Ohm}$		Num=2
		$\mathrm{E}=90$	$\mathrm{E}=90$	$\mathrm{E}=90$		$\mathrm{Z}=30 \mathrm{Ohm}$
-		$\mathrm{F}=3 \mathrm{GHz}$	$\mathrm{F}=3 \mathrm{GHz}$	$\mathrm{F}=3 \mathrm{GHz}$		

ARA	S-PARAMETERS

General theory
Microwave Network Analysis

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

Network Analysis

- We try to separate a complex circuit into individual blocks
- These are analyzed separately (decoupled from the rest of the circuit) and are characterized only by the port level signals (black box)
- Network-level analysis allows you to put together individual block results and get a total result for the entire circuit

Impedance matrix - Z

$$
V_{1}=\left.Z_{11} \cdot I_{1}\right|_{I_{2}=0} \quad Z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I-0} \quad \begin{aligned}
& \text { Z11-input impedance with } \\
& \text { open-circuited output }
\end{aligned}
$$

$$
Z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} \quad Z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} \quad Z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0} \quad Z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}
$$

Admittance matrix - Y

$$
I_{1}=\left.Y_{11} \cdot V_{1}\right|_{V_{2}=0} \quad Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0} \quad \begin{aligned}
& \text { Y11 }- \text { input admittance with } \\
& \text { short-circuited output }
\end{aligned}
$$

$$
Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}
$$

$$
Y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{V_{1}=0}
$$

$$
Y_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{V_{2}=0} \quad Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0}
$$

$$
\begin{aligned}
& \xrightarrow{\stackrel{\mathrm{I}_{1}}{\longleftrightarrow}} \stackrel{\mathrm{I}_{2}}{\longleftrightarrow},\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] \\
& I_{1}=Y_{11} \cdot V_{1}+Y_{12} \cdot V_{2} \\
& I_{2}=Y_{21} \cdot V_{1}+Y_{22} \cdot V_{2}
\end{aligned}
$$

Hybrid matrices - H and G

$$
H_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0 \text { or } H_{22} \rightarrow \infty}
$$

- $h_{21 E}$ widely used for Bipolar Transistors, common emitter topology (or $\beta, h_{22 \mathrm{E}} \gg$)

Network Analysis

- Each matrix is best suited for a particular mode of port excitation (V, I)
- matrix H in common emitter connection for $\mathrm{TB}: \mathrm{I}_{\mathrm{B}}, \mathrm{V}_{\mathrm{CE}}$
- matrices provide the associated quantities depending on the "attack" ones
- Traditional notation of Z, Y, G, H parameters is in lowercase (z, y, g, h)
- In microwave analysis we prefer the notation in uppercase to avoid confusion with the normalized parameters

$$
\begin{gathered}
z=\frac{Z}{Z_{0}} \quad y=\frac{Y}{Y_{0}}=\frac{1 / Z}{1 / Z_{0}}=\frac{Z_{0}}{Z}=Z_{0} \cdot Y \\
z_{11}=\frac{Z_{11}}{Z_{0}} \quad y_{11}=\frac{Y_{11}}{Y_{0}}=Z_{0} \cdot Y_{11}
\end{gathered}
$$

ABCD (transmission) matrix

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]=\frac{1}{A \cdot D-B \cdot C} \cdot\left[\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right] \cdot\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]} \\
& A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0} \quad B=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0} \quad C=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0} \quad D=\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0}
\end{aligned}
$$

ABCD (transmission) matrix

This 2X2 matrix characterizes the "input"/"output" relation

- Allows easy chaining of multiple two-ports

ABCD (transmission) matrix

ABCD (transmission) matrix

- suitable only for two-port networks (Z, Y can be easily extended for multiport / n-ports)
- allows easy coupling of multiple elements
- allows the calculation of complex circuits with one input and one output by breaking them in individual component blocks
- a library of ABCD matrices for elementary two-port networks can be built up

Library of ABCD matrices

- Series impedance

$$
\begin{array}{ll}
A=1 & B=Z \\
C=0 & D=1
\end{array}
$$

$$
\begin{aligned}
& A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0}=1 \quad B=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0}=\frac{V_{1}}{V_{1} / Z}=Z \\
& C=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0}=0
\end{aligned} \quad D=\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0}=\frac{I_{1}}{I_{1}}=1, ~ l
$$

Library of ABCD matrices

- Shunt admittance

$$
\begin{array}{ll}
A=1 & B=0 \\
C=Y & D=1
\end{array}
$$

Homework!

Library of ABCD matrices

- Transmission line

$$
\begin{aligned}
& A=\cos \beta \cdot l \\
& B=j \cdot Z_{0} \cdot \sin \beta \cdot l \\
& C=j \cdot Y_{0} \cdot \sin \beta \cdot l \\
& D=\cos \beta \cdot l
\end{aligned}
$$

Homework!

$$
Z_{i n}=Z_{0} \cdot \frac{Z_{L}+j \cdot Z_{0} \cdot \tan \beta \cdot l}{Z_{0}+j \cdot Z_{L} \cdot \tan \beta \cdot l}
$$

$$
\left[\begin{array}{cc}
\cos \beta \cdot l & j \cdot Z_{0} \cdot \sin \beta \cdot l \\
j \cdot Y_{0} \cdot \sin \beta \cdot l & \cos \beta \cdot l
\end{array}\right]
$$

Library of ABCD matrices

- Transformer

$$
\begin{array}{ll}
A=N & B=0 \\
C=0 & D=\frac{1}{N}
\end{array}
$$

$\left[\begin{array}{cc}N & 0 \\ 0 & \frac{1}{N}\end{array}\right]$
Homework!

Library of ABCD matrices

- π network

$$
\begin{aligned}
& A=1+\frac{Y_{2}}{Y_{3}} \\
& B=\frac{1}{Y_{3}} \\
& C=Y_{1}+Y_{2}+\frac{Y_{1} \cdot Y_{2}}{Y_{3}} \\
& D=1+\frac{Y_{1}}{Y_{3}}
\end{aligned}
$$

Homework!

Library of ABCD matrices

- T network

$$
\begin{aligned}
& A=1+\frac{Z_{1}}{Z_{3}} \\
& B=Z_{1}+Z_{2}+\frac{Z_{1} \cdot Z_{2}}{Z_{3}} \\
& C=\frac{1}{Z_{3}} \\
& D=1+\frac{Z_{2}}{Z_{3}}
\end{aligned}
$$

Homework!

Example for ABCD matrix

- Find the voltage V_{L} across the load resistor in the circuit shown below (Pozar/exam problem)

Example for ABCD matrix

- We break the circuit in elementary sections
- Sources are left outside
- If necessary, input and output ports are created (and left open-circuited)

Example for ABCD matrix

M_{1}, series impedance

$$
M_{1}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
1 & 50 \\
0 & 1
\end{array}\right]
$$

Example for ABCD matrix

M_{2}, 1:2 transformer

$$
M_{2}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 2
\end{array}\right]
$$

Example for ABCD matrix

M_{3}, series transmission line, $E=90^{\circ}$

$$
M_{3}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
0 & 50 \cdot j \\
\frac{j}{50} & 0
\end{array}\right]
$$

Example for ABCD matrix

M_{4}, shunt impedance/admittance

$$
M_{4}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{25} & 1
\end{array}\right]
$$

Example for ABCD matrix

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
1 & 50 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 2
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & 50 \cdot j \\
\frac{j}{50} & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{25} & 1
\end{array}\right]=\left[\begin{array}{cc}
3 \cdot j & 25 \cdot j \\
\frac{j}{25} & 0
\end{array}\right]
$$

$$
V_{L}=\frac{V}{A}=\frac{3 \angle 0^{\circ}}{3 \cdot j}=1 \angle-90^{\circ}
$$

(Somewhat!) Specific theory
Microwave Network Analysis

Scattering matrix - S

- Scattering parameters

- $V_{2}^{+}=0$ meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$
\Gamma_{2}=0 \rightarrow V_{2}^{+}=0
$$

Scattering matrix - S

- S11 is the reflection coefficient seen looking into port 1 when port 2 is terminated in matched load
- S21 is the transmission coefficient from port 1 (second index!) to port 2 (first index!) when port 2 is terminated in matched load

Scattering matrix - S

- S matrix can be extended to multiple ports

$$
S_{i i}=\left.\frac{V_{i}^{-}}{V_{i}^{+}}\right|_{V_{k}^{+}=0, \forall k k i}
$$

$$
S_{i j}=\left.\frac{V_{i}^{-}}{V_{j}^{+}}\right|_{v_{k}^{+}=0, \forall k \neq j}
$$

- S_{ij} is the reflection coefficient seen looking into port i when all other ports are terminated in matched loads
- S_{ij} is the transmission coefficient from port j (second index!) to port i (first index!) when all other ports are terminated in matched loads

Properties of S matrix

- If port i is connected to a transmission line with charateristic impedance $Z_{\text {oi }}$

$$
\left[Z_{0}\right]=\left[\begin{array}{ccc}
Z_{01} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & Z_{0 n}
\end{array}\right]
$$

- Lecture $3 \quad V(z)=V_{0}^{+} e^{-j \cdot \beta z}+V_{0}^{-} e^{j \cdot \beta \cdot z} \quad I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \cdot \beta \cdot z}-\frac{V_{0}^{-}}{Z_{0}} e^{j \cdot \beta \cdot z}$

In the port's reference plane, $\mathrm{z}=0$

$$
V_{i}=V_{i}^{+}+V_{i}^{-} \quad I_{i}=\frac{V_{i}^{+}}{Z_{0 i}}-\frac{V_{i}^{-}}{Z_{0 i}}
$$

- Relation to Z matrix

$$
[Z] \cdot[I]=[V]
$$

$$
[z] \cdot[I]=\left[Z_{0}\right]^{-1} \cdot[z] \cdot\left[V^{+}\right]-\left[Z_{0}\right]^{-1} \cdot[z] \cdot\left[V^{-}\right] \quad[V]=\left[V^{+}\right]+\left[V^{-}\right]
$$

$$
\left[z_{0}\right]^{-1} \cdot[z] \cdot\left[V^{+}\right]-\left[z_{0}\right]^{-1} \cdot[z] \cdot\left[V^{-}\right]=\left[V^{+}\right]+\left[V^{-}\right] \quad\left([z]-\left[z_{0}\right)\right) \cdot\left[V^{+}\right]=\left([z]+\left[z_{0}\right) \cdot\left[V^{-}\right]\right.
$$

$$
\left[V^{-}\right]=[S] \cdot\left[V^{+}\right] \quad[S]=\left([Z]-\left[Z_{0}\right]\right) \cdot\left([Z]+\left[Z_{0}\right]\right)^{-1}
$$

A Shift in Reference Planes

- De-Embedding

Figure 4.9
Figure 4.9
© John Wiley \& Sons, Inc. All rights reserved.

$$
\left[S^{\prime}\right]=\left[\begin{array}{ccc}
e^{-j \cdot \theta_{1}} & 0 & \cdots \\
0 & e^{-j \cdot \theta_{2}} & 0 \\
\vdots & \vdots & \ddots \\
0 & \cdots & \cdots
\end{array}\right.
$$

$$
\left.\begin{array}{c}
0 \\
0 \\
\vdots \\
e^{-j \cdot \theta_{N}}
\end{array}\right] \cdot[S] \cdot\left[\begin{array}{cccc}
e^{-j \cdot \theta_{1}} & 0 & \cdots & 0 \\
0 & e^{-j \cdot \theta_{2}} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & e^{-j \cdot \theta_{N}}
\end{array}\right]
$$

Properties of S matrix $\left(Z_{,} Y\right)$

- Reciprocal networks (no active circuits, no ferrites)

$$
\begin{array}{ll}
Z_{i j}=Z_{j i}, \forall j \neq i & \\
Y_{i j}=Y_{j i}, \forall j \neq i & \\
S_{i j}=S_{j i}, \forall j \neq i \quad[S]=[S]
\end{array}
$$

- Lossless networks

$$
\begin{array}{ll}
\operatorname{Re}\left\{Z_{i j}\right\}=0, \forall i, j & \\
\operatorname{Re}\left\{Y_{i j}\right\}=0, \forall i, j & \sum_{k=1}^{N} S_{k i} \cdot S_{k i}^{*}=1 \\
\sum_{k=1}^{N} S_{k i} \cdot S_{k j}^{*}=\delta_{i j}, \forall i, j & \sum_{k=1}^{N} S_{k i} \cdot S_{k j}^{*}=0, \forall i \neq j \\
{[S]^{*} \cdot[S]^{t}=[1]} &
\end{array}
$$

Generalized Scattering Parameters

The total voltage and current on a transmission line in terms of the incident and reflected voltage wave amplitudes

$$
V=V_{0}^{+}+V_{0}^{-} \quad I=\frac{1}{Z_{0}} \cdot\left(V_{0}^{+}-V_{0}^{-}\right) \quad \begin{aligned}
& \text { In the port's reference } \\
& \text { plane, } z=0
\end{aligned}
$$

- We find the incident and reflected voltage wave amplitudes

$$
V_{0}^{+}=\frac{V+Z_{0} \cdot I}{2} \quad V_{0}^{-}=\frac{V-Z_{0} \cdot I}{2}
$$

- The average power delivered to a load :

$$
\begin{aligned}
& P_{L}=\frac{1}{2} \cdot \operatorname{Re}\left\{V \cdot I^{*}\right\}=\frac{1}{2 \cdot Z_{0}} \cdot \operatorname{Re}\{\left|V_{0}^{+}\right|^{2}-V_{0}^{+} \cdot \underbrace{V_{0}^{-*}+V_{0}^{+*}}_{\left(z-z_{0}^{*}\right)=\operatorname{Im}} \cdot V_{0}^{-}-\left|V_{0}^{-}\right|^{2}\} \\
& P_{L}=\frac{1}{2 \cdot Z_{0}} \cdot\left(\left|V_{0}^{+}\right|^{2}-\left|V_{0}^{-}\right|^{2}\right)
\end{aligned}
$$

Generalized Scattering Parameters

The average power delivered to a load:

$$
P_{L}=\frac{1}{2 \cdot Z_{0}} \cdot\left(\left|V_{0}^{+}\right|^{2}-\left|V_{0}^{-}\right|^{2}\right)
$$

- Restrictions
- Result valid for Zo real
- Requires the presence of a line with characteristic impedance $Z o$ between the source and the load

Generalized Scattering Parameters

- We define the power wave amplitudes a and b

$$
\begin{aligned}
a= & \frac{V+Z_{R} \cdot I}{2 \cdot \sqrt{R_{R}}} \text { the incident power wave } \begin{array}{c}
Z_{R}=R_{R}+j \cdot X_{R} \\
\text { Any complex impedance, } \\
\text { named reference impedance }
\end{array}
\end{aligned}
$$

- Total voltage and current in terms of the power wave amplitudes

$$
\begin{aligned}
& V=\frac{Z_{R}^{*} \cdot a+Z_{R} \cdot b}{\sqrt{R_{R}}} \\
& I=\frac{a-b}{\sqrt{R_{R}}}
\end{aligned}
$$

Reflection and power / Model - L3

$$
P_{r}=\frac{\left|E_{i}\right|^{2}}{4 R_{i}} \cdot\left[\frac{\left(R_{i}-R_{L}\right)^{2}+\left(X_{i}+X_{L}\right)^{2}}{\left(R_{i}+R_{L}\right)^{2}+\left(X_{i}+X_{L}\right)^{2}}\right]=P_{a} \cdot|\Gamma|^{2}
$$

$$
P_{a}=\frac{\left|E_{i}\right|^{2}}{4 R_{i}}
$$

$$
\mathrm{Z}_{\mathrm{L}} \quad P_{L}=\frac{R_{L} \cdot\left|E_{i}\right|^{2}}{\left(R_{i}+R_{L}\right)^{2}+\left(X_{i}+X_{L}\right)^{2}}
$$

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}^{*}}{Z_{L}+Z_{0}}
$$

- 「, power reflection coefficient

Power waves

$$
\Gamma_{p}=\frac{b}{a}=\frac{V-Z_{R}^{*} \cdot I}{V+Z_{R} \cdot I}=\frac{Z_{L}-Z_{R}^{*}}{Z_{L}+Z_{R}}
$$

Power waves

$$
V=\frac{V_{0} \cdot Z_{L}}{Z_{g}+Z_{L}} \quad I=\frac{V_{0}}{Z_{g}+Z_{L}} \quad P_{L}=\frac{V_{0}^{2}}{2} \cdot \frac{R_{L}}{\left|Z_{g}+Z_{L}\right|^{2}} .
$$

- If we choose $Z_{R}=Z_{L}^{*}$

$$
\begin{aligned}
& a=\frac{V+Z_{R} \cdot I}{2 \cdot \sqrt{R_{R}}}=V_{0} \cdot \frac{\frac{Z_{L}}{Z_{g}+Z_{L}}+\frac{Z_{L}^{*}}{Z_{g}+Z_{L}}}{2 \cdot \sqrt{R_{L}}}=V_{0} \cdot \frac{\sqrt{R_{L}}}{Z_{g}+Z_{L}} \\
& b=\frac{V-Z_{R}^{*} \cdot I}{2 \cdot \sqrt{R_{R}}}=V_{0} \cdot \frac{\frac{Z_{L}}{Z_{g}+Z_{L}}-\frac{Z_{L}}{Z_{g}+Z_{L}}}{2 \cdot \sqrt{R_{L}}}=0 \\
& P_{L}=\frac{1}{2} \cdot|a|^{2}=\frac{V_{0}^{2}}{2} \cdot \frac{R_{L}}{\left|Z_{g}+Z_{L}\right|^{2}}
\end{aligned}
$$

Power waves

- When the load is conjugately matched to the generator

$$
Z_{g}=Z_{L}^{*} \quad P_{L \max }=\frac{1}{2} \cdot|a|^{2}=\frac{V_{0}^{2}}{8 \cdot R_{L}}
$$

- Power reflection: L3

$$
\begin{array}{ccc}
Z_{L}=Z_{i}^{*} & P_{L \max } \equiv P_{a} & \Gamma=\frac{Z-Z_{0}^{*}}{Z+Z_{0}} \\
Z_{L} \neq Z_{i}^{*} & P_{r}=P_{a} \cdot|\Gamma|^{2} & P_{L}=P_{a}-P_{r}=P_{a}-P_{a} \cdot|\Gamma|^{2}=P_{a} \cdot\left(1-|\Gamma|^{2}\right)
\end{array}
$$

- Power reflection: L4

$$
\begin{aligned}
& P_{L \text { max }} \equiv P_{a}=\frac{1}{2} \cdot|a|^{2} \quad P_{L}=\frac{1}{2} \cdot|a|^{2}-\frac{1}{2} \cdot|b|^{2} \quad \Gamma_{p}=\frac{b}{a}=\frac{V-Z_{R}^{*} \cdot I}{V+Z_{R} \cdot I}=\frac{Z_{L}-Z_{R}^{*}}{Z_{L}+Z_{R}} \\
& P_{L}=\frac{1}{2} \cdot|a|^{2}-\frac{1}{2} \cdot|a|^{2} \cdot\left|\Gamma_{p}\right|^{2} \quad P_{L}=P_{a} \cdot\left(1-\left|\Gamma_{p}\right|^{2}\right) \quad P_{r}=P_{a} \cdot\left|\Gamma_{p}\right|^{2}=\frac{1}{2} \cdot|b|^{2}
\end{aligned}
$$

Scattering matrix for power waves

$$
\begin{gathered}
{\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{ll}
S_{11}^{\prime} & S_{12}^{\prime} \\
S_{21}^{\prime} & S_{22}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]} \\
S_{11}^{\prime}=\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0} \quad S_{22}^{\prime}=\left.\frac{b_{2}}{a_{2}}\right|_{a_{1}=0} \\
{[b]=\left[S_{p}\right] \cdot[a]}
\end{gathered}
$$

Power waves

To define the scattering matrix for power waves for an N -port network

$$
\begin{aligned}
{\left[Z_{R}\right]=} & {\left[\begin{array}{ccc}
Z_{R 1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & Z_{R n}
\end{array}\right] \quad[F]=\left[\begin{array}{ccc}
1 / 2 \sqrt{R_{R 1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 / 2 \sqrt{R_{R n}}
\end{array}\right] } \\
& {[a]=[F] \cdot\left([V]+\left[Z_{R}\right] \cdot[I]\right) } \\
& {[b]=[F] \cdot\left([V]-\left[Z_{R}\right]^{*} \cdot[I]\right) } \\
& {[z] \cdot[I]=[V] }
\end{aligned}
$$

Power waves for \mathbf{N} ports

$$
[b]=[F] \cdot\left([Z]-\left[Z_{R}\right]^{*}\right) \cdot\left([Z]+\left[Z_{R}\right]\right)^{-1} \cdot[F]^{-1} \cdot[a]
$$

The scattering matrix for power waves, $\left[\mathrm{S}_{\mathrm{p}}\right]$

$$
\begin{aligned}
& {[b]=\left[S_{p}\right] \cdot[a]} \\
& \left.\left[S_{p}\right]=[F] \cdot[Z]-\left[Z_{R}\right]^{*}\right) \cdot\left([Z]+\left[Z_{R}\right]\right)^{-1} \cdot[F]^{-1}
\end{aligned}
$$

But: $\quad[S]=\left([z]-\left[z_{0}\right]\right) \cdot\left([z]+\left[z_{0}\right]\right)^{-1}$
Typically

$$
\begin{aligned}
& Z_{0 i}=Z_{R i}=R_{0}, \forall i \quad\left[S_{p}\right] \equiv[S]=\text { they } \\
& R_{0}=50 \Omega
\end{aligned} \quad \text { coincide!!! }
$$

Scattering matrix - S

$$
\begin{aligned}
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]} \\
& S_{11}=\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0} \quad S_{22}=\left.\frac{b_{2}}{a_{2}}\right|_{a_{1}=0}
\end{aligned}
$$

- S_{11} and S_{22} are reflection coefficients at ports 1 and 2 when the other port is matched

Scattering matrix - S

- S_{21} si S_{12} are signal amplitude gain when the other port is matched

Scattering matrix - S

- a,b
" information about signal power AND signal phase
- $S_{i j}$
- network effect (gain) over signal power including phase information

Measuring S parameters - VNA

- Vector Network Analyzer

Figure 4.7

Relation between two port S parameters and ABCD parameters

$$
\begin{aligned}
& A=\sqrt{\frac{Z_{01}}{Z_{02}}} \frac{\left(1+S_{11}-S_{22}-\Delta S\right)}{2 S_{21}} \\
& B=\sqrt{Z_{01} Z_{02}} \frac{\left(1+S_{11}+S_{22}+\Delta S\right)}{2 S_{21}} \\
& C=\frac{1}{\sqrt{Z_{01} Z_{02}}} \frac{1-S_{11}-S_{22}+\Delta S}{2 S_{21}} \\
& D=\sqrt{\frac{Z_{02}}{Z_{01}}} \frac{1-S_{11}+S_{22}-\Delta S}{2 S_{21}}
\end{aligned}
$$

$$
S_{11}=\frac{A Z_{02}+B-C Z_{01} Z_{02}-D Z_{01}}{A Z_{02}+B+C Z_{01} Z_{02}+D Z_{01}}
$$

$$
S_{12}=\frac{2(A D-B C) \sqrt{Z_{01} Z_{02}}}{A Z_{02}+B+C Z_{01} Z_{02}+D Z_{01}}
$$

$$
S_{21}=\frac{2 \sqrt{Z_{01} Z_{02}}}{A Z_{02}+B+C Z_{01} Z_{02}+D Z_{01}}
$$

$$
S_{22}=\frac{-A Z_{02}+B-C Z_{01} Z_{02}+D Z_{01}}{A Z_{02}+B+C Z_{01} Z_{02}+D Z_{01}}
$$

$$
\Delta S=S_{11} S_{22}-S_{12} S_{21}
$$

Even/Odd Mode Analysis

Even/Odd Mode Analysis

- useful method, necessary even for multiple ports
- example, resistors, two port circuit 100Ω

Even/Odd Mode Analysis

- assume we want to compute Y_{11}
- $E_{2}=0$

$$
Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}
$$

$$
\begin{aligned}
& R_{\text {ech }}=100 \Omega \|(50 \Omega+25 \Omega \| 50 \Omega)= \\
& =100 \Omega\|(50 \Omega+16.67 \Omega)=100 \Omega\| 66.67 \Omega=40 \Omega \quad Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}=0.025 S
\end{aligned}
$$

Even/Odd Mode Analysis

- Even/Odd mode analysis benefit from the existence of symmetry planes in the circuit
" existing or
- created (forced)
| symmetry plane

Even/Odd Mode Analysis

- when exciting the ports with symmetric/anti-symmetric sources the symmetry planes are transformed into:
- open circuit
- virtual ground

Even/Odd Mode Analysis

- the combination of any two sources is equivalent for linear circuits with the superposition of:
- a symmetric source and

Even/Odd Mode Analysis

- In linear circuits the superposition principle is always true
- the response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually
Response $($ Source1 + Sourcez $)=$ = Response (Source1) + Response (Source2)

Response(ODD + EVEN) = Response (ODD) + Response (EVEN)

We can benefit from existing symmetries !!

Even/Odd Mode Analysis

Even/Odd Mode Analysis

- Even/Odd mode analysis

EVEN \rightarrow symmetry plane open circuit

$R_{e c h}^{o}=50 \Omega| | 50 \Omega=25 \Omega$
$I_{1}^{o}=\frac{E^{o}}{R_{\text {ech }}^{o}}=\frac{E_{1} / 2}{25 \Omega}=\frac{E_{1}}{50 \Omega}$
ODD \rightarrow symmetry plane virtual ground

Even/Odd Mode Analysis

- superposition principle

Even/Odd Mode Analysis

- In linear circuits we can use the superposition principle
- advantages
" reduction of the circuit complexity
- decrease of the number of ports (main advantage)

Response (ODD + EVEN) = Response (ODD) + Response (EVEN)

We can benefit from existing symmetries !!

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

